ENVIRONMENTAL PRODUCT DECLARATION

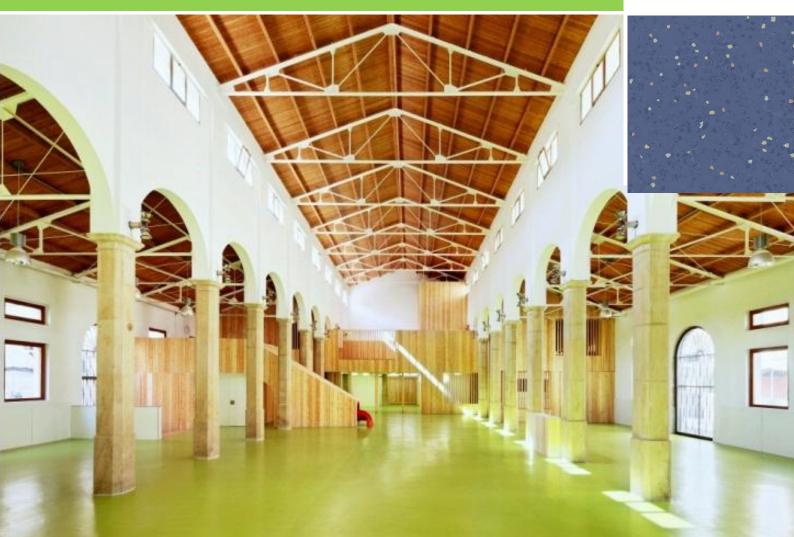
as per EN ISO 14025 and EN 15804

Programme holder Institut Bauen und Umwelt e.V. (IBU)

Publisher Institut Bauen und Umwelt e.V. (IBU)

Declaration number EPD-ERF-2013711-E

Issue date 01.04.2013 Valid to 31.03.2018


Homogeneous and heterogeneous smooth rubber floor coverings according to EN 1817

ERFMI

European Resilient Flooring Manufacturers' Institute

www.bau-umwelt.com / https://epd-online.com

General Information

ERFMI - European Resilient Flooring Manufacturers' Institute

Programme holder

IBU - Institut Bauen und Umwelt e.V. Rheinufer 108 D-53639 Königswinter

Declaration number

EPD-ERF-2013711-E

This Declaration is based on the Product Category Rules:

Floor coverings, Version 1.1: 29.10.2012 (PCR tested and approved by the independent expert committee)

Issue date

01.04.2013

Valid to

31.03.2018

Prof. Dr.-Ing. Horst J. Bossenmayer (President of Institut Bauen und Umwelt e.V.)

Prof. Dr.-Ing. Hans-Wolf Reinhardt

(Chairman of SVA)

Homogeneous and heterogeneous smooth rubber floor coverings

Owner of the Declaration

ERFMI vzw, European Resilient Flooring Manufacturers' Institute 71, Avenue de Cortenbergh B-1000 Brussels

Declared product / Declared unit

1m² homogeneous and heterogeneous smooth rubber floor coverings, installed

Scope:

In this EPD homogeneous and heterogeneous smooth rubber floor coverings are declared. The application of this EPD is restricted to homogeneous and heterogeneous smooth rubber floor coverings produced by the members of the European Resilient Flooring Manufacturers' Institute (ERFMI). Data are based upon production during 2011 in Europe. Data have been provided by 2 companies of ERFMI which represents 100% of ERFMI members. The owner of the declaration shall be liable for the underlying information and evidence.

Verification

The CEN Norm EN 15804 serves as the core PCR Independent verification of the declaration and data according to EN ISO 14025

internally

externally

Prof. Dr. Birgit Grahl (Independent tester appointed by SVA)

Product

Product description

Resilient floor coverings are an entire product family of flexible flooring solutions available in sheet, tiles and planks. It is classified in heterogeneous or homogeneous composition based on vinyl, linoleum, cork or rubber. Resilient floor coverings can provide different functionalities (acoustic, static control, slip resistance, easy maintenance etc.) to match a wide range of domestic, commercial and industrial applications. It is available in an enormous range of patterns and colours fitting with inspiration and decorative needs.

Homogeneous and heterogeneous smooth rubber floor coverings are produced mainly of rubber polymers, mineral charges and colour pigments. Raw materials are mixed, blended, and then vulcanized on production lines under temperature and pressure to become rubber floor covering in sheets or tiles. The surface of the floor covering can be smooth or slightly textured; available in several patterns and designs.

Application

According to EN ISO 10874 (EN 685) the area of application for resilient floor coverings is indicated by

use classes. The declared product group covers the use classes 23, 34 and 42.

Technical Data

Technical construction data for the product group:

Constructional data	Value	Unit	Standard
Product thickness *	2.0	mm	EN ISO 24346
Surface weight *	3.3	kg/m ²	EN ISO 23997
Product Form		she	et

^{*} weighted average

Base materials/ Ancilliary materials

The product group has the following composition:

Component	Value	Unit
Additives	7.1	%
Filler	53.2	%
Pigments	11	%
Auxiliaries	1.9	%
Polymers (Rubber)	26.8	%

The declared recipes were checked with the REACH candidate list from June 18th, 2012 and did not contain listed REACH substances.

Reference service life

This EPD does not indicate RSL. Only module B2 (maintenance) is declared and the use stage scenario is independent on the life time of the product. The declared modules in the table of results (chapter 5) refer to one life cycle of the floor covering with B2 (cleaning) being declared for a time period of one year. For the calculation of the impact of B2 for a

different time period the values for B2 have to be multiplied by the estimated service life in years. ERFMI provides an online tool for this calculation on the ERFMI home page (www.erfmi.com) for the enduser

LCA: Calculation rules

Declared Unit

1m² of installed floor covering.

Name	Value	Unit
Declared unit	1	m ²
Conversion factor to 1 kg	1/3.3	-

The declaration refers to an average product from 2 production sites of ERFMI members. The data have been weighted according to the annual square meters produced by each site. The life cycle impact assessment is conducted based on the vertical average.

System boundary

Type of EPD: cradle to grave

Modules A1-A3 include processes that provide materials and energy input for the system, manufacturing and transport processes up to the factory gate, as well as waste processing.

Module A4 includes transport of the floor covering to the place of installation.

Module A5 includes the production of adhesive for the installation of the floor covering, and incineration of offcuts and packaging material.

Module B2 is including provision of cleaning agent, energy and water consumption for the cleaning of the floor covering incl. waste water treatment. The LCA results in this EPD are declared for a one year usage.

Module C1 considers electricity supply for the deconstruction of the flooring.

Module C2 includes transportation of the post-consumer waste to waste processing.

End of life scenarios are declared for:

- 100% incineration in a waste incineration plant (WIP)
- 100% landfilling

Module D includes benefits from all net flows given in module A5 and C3 that leave the product boundary system after having passed the end-of-waste state in the form of recovery and/or recycling potentials. Module D is declared for each scenario separately.

Comparability

Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to EN 15804 and the building context, respectively the product-specific characteristics of performance, are taken into account.

LCA: Scenarios and additional technical information

The following technical information is a basis for the declared modules

Transport to the construction site (A4)

Transport to the construction :	Transport to the construction site (A4)									
Name	Value	Unit								
Litres of fuel	0,0053	l/m ² *100km								
Transport distance	2000	km								
Capacity utilisation (including empty runs)	85	%								

Installation in the building (A5)

Name	Value	Unit		
Auxiliary (adhesive)	0.3	kg		
Material loss (installation waste)	6.0	%		

Maintenance (B2)

Name	Value	Unit
Maintenance cycle (vacuum cleaning & wet cleaning)	156	number/a
Water consumption	0.003	m ³
Auxiliary (detergent)	0.04	kg
Electricity consumption	0.55	kWh

End of Life (C1-C4)

Name	Value	Unit		
Incineration	3.3	kg		
Landfilling	3.3	kg		

Reuse, recovery and/or recycling potentials (D), relevant scenario information

For module D the credits given in module A5 and C3 are declared.

For waste incineration combustion in a WIP (R1 < 0.6) with energy recuperation is considered.

LCA: Results

The results for module B2 refer to a period of one year.

For the calculation of the impact of B2 for a certain service life the values for B2 have to be multiplied by the estimated service life in years.

ERFMI provides an online tool for this calculation on the ERFMI home page (www.erfmi.com) for the end-user.

DESC	RIPT	ION O	F THE	SYS1	TEM B	OUND	ARY (X = IN	CLUD	ED IN	LCA; I	MND =	MOD	ULE N	OT DE	ECLARED)
PROI	DUCT S	TAGE	ON PR	TRUCTI OCESS AGE		USE STAGE					USE STAGE END OF LIFE STAGE			BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARYS		
Raw material supply	Transport	Manufacturing	Transport	Construction- installation process	nse	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse- Recovery- Recycling- potential
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
	Χ		Χ	Х	MND	Χ	MND	MND	MND	MND	MND	Х	Χ	Χ	Χ	X

RESULTS OF THE LCA - ENVIRONMENTAL IMPACT: 1m² installed

Parameter	Unit	A1 - A3	A4	A5	B2	C1	C2	C3/I ¹	C3/L	C4/I	C4/L	D/I	D/L
GWP	[kg CO ₂ -Äq.]	1,0E+01	3,5E-01	9,5E-01	4,3E-01	1,4E-02	3,1E-02	4,9E+00	0	0	2,4E-01	-2,2E+00	-2,8E-01
ODP	[kg CFC11-Äq.]	1,7E-06	6,1E-12	4,3E-10	2,6E-10	1,3E-11	5,5E-13	1,1E-09	0	0	1,2E-10	-8,2E-10	-1,03E-10
AP	[kg SO ₂ -Äq.]	3,8E-02	1,6E-03	1,1E-03	1,6E-03	6,8E-05	1,4E-04	2,9E-03	0	0	7,2E-04	-5,2E-03	-6,6E-04
EP	[kg PO ₄ 3- Äq.]	3,6E-03	3,6E-04	1,7E-04	1,3E-04	3,6E-06	3,3E-05	3,4E-04	0	0	8,8E-04	-3,5E-04	-4,5E-05
POCP	[kg Ethen Äq.]	7,8E-03	-5,2E-04	1,8E-04	1,7E-04	4,0E-06	-4,7E-05	7,3E-04	0	0	1,1E-04	-4,3E-04	-5,47E-05
ADPE	[kg Sb Äq.]	1,7E-04	1,3E-08	1,8E-07	2,0E-07	2,0E-09	1,2E-09	5,1E-07	0	0	4,6E-08	-1,7E-07	-2,2E-08
ADPF	[MJ]	1,8E+02	4,8E+00	1,2E+01	8,3E+00	2,5E-01	4,3E-01	2,8E+01	0	0	3,6E+00	-3,7E+01	-4,7E+00

GWP = Global warming potential; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential of land and water; EP = Eutrophication potential; POCP = Formation potential of tropospheric ozone photochemical oxidants; ADPE = Abiotic depletion potential for non fossil resources; ADPF = Abiotic depletion potential for fossil resources

RESULTS OF THE LCA - RESOURCE USE: 1m² installed

Parameter	Unit	A1 - A3	A4	A5	B2	C1	C2	C3/I	C3/L ²	C4/I	C4/L	D/I	D/L
PERE	[MJ]	1,4E+00	-	-	-	-	-	-	-	-	-	-	-
PERM	[MJ]	1,6E+01	-	-	-		-	-	-	-	-	-	-
PERT	[MJ]	1,7E+01	1,9E-01	1,7E+00	8,3E-01	4,2E-02	1,7E-02	1,3E+00	0	0	1,7E-01	-2,7E+00	-3,3E-01
PENRE	[MJ]	1,5E+02	-	-	-	-	-	-			-	-	-
PENRM	[MJ]	3,4E+01	-	-	-	-	-	-			-	-	-
PENRT	[MJ]	1,8E+02	4,8E+00	1,2E+01	8,3E+00	2,5E-01	4,3E-01	2,8E+01	0	0	3,6E+00	-3,7E+01	-4,7E+00
SM	[kg]	0	0	0	0	0	0	0	0	0	0	0	0
RSF	[MJ]	-	-	-	-		-	-	-	-	-	-	-
NRSF	[MJ]	-	-	-	-	-	-	-	-	-	-	-	-
FW	[kg]	2,9E+01	2,1E-01	3,4E+00	3,2E+00	1,1E-01	1,9E-02	1,8E+01	0	0	-1,9E+00	-7,5E+00	-9,4E-01

Caption

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non renewable primary energy excluding non renewable primary energy resources used as raw materials; PENRM = Use of non renewable primary energy resources used as raw materials; PENRT = Total use of non renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; RNSF = Use of non renewable secondary fuels; FW = Use of net fresh water

RESULTS OF THE LCA – OUTPUT FLOWS AND WASTE CATEGORIES:

Parameter	Unit	A1 - A3	A4	A5	B2	C1	C2	C3/I	C3/L	C4/I	C4/L	D/I	D/L
HWD	[kg]	2,2E-02	0	8,4E-04	1,9E-03	0	0	2,1E-03	0	0	9,4E-04	0	0
NHWD	[kg]	1,4E+00	6,2E-04	5,9E-02	5,8E-03	1,1E-04	5,6E-05	9,0E-01	0	0	3,3E+00	-9,5E-03	-1,2E-03
RWD	[kg]	2,8E-03	6,7E-06	2,1E-04	7,3E-04	3,7E-05	6,0E-07	7,9E-04	0	0	6,5E-05	-2,4E-03	-2,9E-04
CRU	[kg]	-	-	-	-	-	-	-	-		-	-	-
MFR	[kg]	-	-	-	-	-	-	-	-		-	1,4E-01	1,4E-01
MER	[kg]	-	-	-	-	-	-	-	-		-	-	-
EEE	[MJ]	-	-	-	-	-	-	-	-		-	6,5E+00	8,2E-01
EET	[MJ]	-	-	-	-	-	-	-	-	-	-	1,9E+01	2,5E+00

HWD = Hazardous waste disposed; NHWD = Non hazardous waste disposed; RWD = Radioactive waste disposed; CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported electrical energy; EET = Exported thermal energy

Not all of the life cycle inventories applied in this study support the methodological approach for the waste and water indicators. The data are based on publications of industry. The indicators for waste and water of the system are evaluated, but contain a higher degree of uncertainty.

The evaluation of best EoL-scenario requires the consideration of further aspects like avoidance of combustion of fossil fuels when incinerated and demand for landfilling when recycled.

¹ Scenario "I" = 100% Incineration

Scenario "L" = 100% Landfilling

References

Institut Bauen und Umwelt 2011

Institut Bauen und Umwelt e.V., Königswinter (pub.): Generation of Environmental Product Declarations (EPDs);

General principles

for the EPD range of Institut Bauen und Umwelt e.V. (IBU), 2011-09 www.bau-umwelt.de

PCR 2011, Part A

Institut Bauen und Umwelt e.V., Königswinter (pub.): Product Category Rules for Construction Products from the range of Environmental Product Declarations of Institut Bauen und Umwelt (IBU), Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Background Report. September 2012

www.bau-umwelt.de

PCR 2012, Part B

Institut Bauen und Umwelt e.V., Königswinter (pub.): Product Category Rules for Construction Products from the range of Environmental Product Declarations of Institut Bauen und Umwelt (IBU), Part B: Requirements on the EPD for floorcoverings, Version 1.1 Institut Bauen und Umwelt e.V., www.bau-umwelt.com, 10/2012

EN ISO 10874 (previously EN 685)

EN ISO 10874:2012 Resilient, textile and laminate floor coverings - Classification (ISO 10874:2009)

EN ISO 14025

EN ISO 14025:2011-10: Environmental labels and declarations — Type III environmental declarations — Principles and procedures

EN ISO 23997

EN ISO 23997:2012: Resilient floor coverings - Determination of mass per unit area (ISO 23997:2008)

EN ISO 24346

EN ISO 24346:2012: Resilient floor coverings - Determination of overall thickness (ISO 24346:2006)

FN 15804

EN 15804:2012-04: Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products

EN 1817

EN 1817:2010 Resilient floor coverings - Specification for homogeneous and heterogeneous smooth rubber floor coverings

Institut Bauen und Umwelt e.V.	Publisher Institut Bauen und Umwelt e.V. Rheinufer 108 53639 Königswinter Germany	Tel Fax Mail Web	+49 (0)2223 29 66 79- 0 +49 (0)2223 29 66 79- 0 info@bau-umwelt.com www.bau-umwelt.com
Institut Bauen und Umwelt e.V.	Programme holder Institut Bauen und Umwelt e.V. Rheinufer 108 53639 Königswinter Germany	Tel Fax Mail Web	+49 (0)2223 29 66 79- 0 +49 (0)2223 29 66 79- 0 info@bau-umwelt.com www.bau-umwelt.com
ERFMI EUROPEAN RESILIENT FLOORING MANUFACTURERS' INSTITUTE	Owner of the Declaration ERFMI vzw, European Resilient Flooring Manufacturers' Institute 71, Avenue de Cortenbergh B-1000 Brussels Belgium	Tel Fax Mail Web	+32 (0) 2 7 39 63 87 +32 (0) 2 7 34 08 75 info@erfmi.com www.erfmi.com

Author of the Life Cycle Assessment PE INTERNATIONAL Hauptstraße 111-113 70771 Leinfelden-Echterdingen Germany

+49 (0)711 341817-0 +49 (0)711 341817-25

info@pe-international.com www.pe-international.com

Tel Fax

Mail Web

PE INTERNATIONAL SUSTAINABILITY PERFORMANCE